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I INTRODUCT ION

A. Background

Satellite-borne imaging sensors have provided the first economical

means of gathering large amounts of data on the earth's resources and

environment. However', there is as yet no economically feasible way of

analyzing the imagery to extract the useful information. The volume of

data collected is indeed so high that routine data handling requires

massive supercomputers. In the face of such volume, the manual or

interactive methods of image analysis currently in use are woefully

inadequate.

Most research to date on automatic processing of satellite imagery

has concentrated on multispectral elassiflcation of individual picture

elements (plxels) using conventional pattern-recognitlon techniques [I].

While promising results have been obtained in selected applications,

most notably crop elassifleatlon [2], exhaustive pixel classification

has proved either ineffective or simply too expensive for many remote

sensing requirements.

In the past year, we have been exploring the feasibility of

automating a variety of previously intractable remote sensing tasks

using the methodology and techniques of scene analysis. A key concept

in the scene-analysis approach is the use of many diverse types of

knowledge to guide image interpretation [3]. In the interpretation of

aerial and satellite imagery, maps provide a particularly rich source of

knowledge. Map knowledge can provide important constraints on where to

look in an image, what to look for, and how to interpret what is seen.

Such constraints, properly exploited, permit the extraction of complex

infom_at_on without intensive computation.



The research, so far, has concentrated on a specific class of

remote sensing tasks that entail the continuous monitoring or tracking

of predefined targets. Monitorin£ tasks are concerned with detecting an

anomalous condition at a specified geographic location or within a

specified area. Examples include monitoring the effluents of a

particular industrial plant for thermal or chemical pollution, oil

storage facilities for spillage, forests for fires, and reservoirs for

water quality. Tracking is a variant of monitoring, concerned with

determining the current geographic location of a slowly moving object or

boundary whose position is known approximately from a previous

determination. Examples include tracking icebergs, the spreading

boundaries of a known oil spill, the perimeter of reservoirs (to assess

changes in water volume), coastal shorelines (to assess erosion), and

the width of rivers (to assess flood threat). Ideally, a monitoring

system should be able to extract updated information automatically

whenever new imagery arrives and distribute it directly to interested

users.

B. Ove_v_@wof$cene-Analvsis_

The key to automating monitorlng-type tasks with scene analysis

lies in knowing where in an image to look and what to look for. With

this information, many monitoring and tracking tasks are reduced to

simple detection problems with straightforward solutions. For example,

once the precise pixel locat_on of a river passing beside a

manufacturing plant is known, pollution levels in the plant's effluents

can, in pr_nciple, be determined by using conventional multispectral

analysis. Similarly, forest fires can be detected by looking for

infrared hot spots in known forested areas. Tracking slowly changing

boundaries, such as the perimeters of water bodies, is also tremendously

simplified by knowledge of the boundaries' approximate prior location.

Fragments of the boundary can then be detected by performing local

searches with simple verification operators.



The above examples all rely heavily on knowing where to look. They
thus have, as a commonrequirement, the location of specific ground

reference points in the image. Ground locations have conventionally

been determined by warping the current sensed image into correspondence
with a reference image, based on a large number of local correlations

[4]. The reference image serves as a map indicating locations in the
sensed image that correspond to previously determined points of interest

in the reference image. The process is computationally expensive and

limited to cases where the reference and sensed images were obtained

under similar viewing conditions.

To overcome these limitations,

image and rely instead on a symbolic

we abandon the use of a reference

reference map containing explicit

ground coordinates and elevations for all monitoring sites as well as

landmarks (roads, coastlines, and so forth). The geometric

correspondence between this map and the sensed image is established by

calibrating an analytic camera model. The camera model makes it

possible to predict precisely the image coordinates (in the original

unrectified image) corresponding to any world location in the map. The

need for expensive image warping is thus eliminated. (The calibration

process is described in Section III and, in more detail, in Appendix A.)

Figure I summarizes the major steps in a typical monitoring task,

such as monitoring the pollutants emitted by industrial sites. First,

the parameters of the camera model are calibrated to establish map-image

correspondence. Second, the camera model is used to compute the exact

image coordinates of each monitoring site visible in the current image.

Finally, spectral signatures are analyzed at each location to determine

the current degree of pollution. The analysis provides a detailed

breakdown of the pollutants detected at each plant site.
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FIGURE 1 BASIC STEPS IN A MONITORING TASK



C. AdvantaKesof Scene-Analysis Approach

The scene analysis approach outlined above has some potentially

slgnifJr-nt advantages over conventional bulk image processing

approaches of the type commonly used in such applications as crop

classification. First, computational requirements are sharply reduced

by avoiding intensive processing of all plxels (16 million in a typical

#000 x #000 LANDSAT image). In particular, bul_ image rectification

(i.e., warping) is not needed and analysis can be restricted to specific

parts of the image containing relevant information. Since processirg is

concentrated on a few selected image locations, sophisticated forms of

analysis involving texture, spatial patterns, and the like become

computatlonally feasible. Second, analysis routines can be simplified

and made more reliable by exploiting knowledge of what to look for at

each site. For example, classi_'Lcatlon criteria can be locally tuned to

discriminate a few anticipated alternatives, taking into account

additional local factors such as weather, season, and past appearance.

Finally, the geographic specificity of the a_alysis yields results that

are much more useful than conventional statistical summaries: Knowing

that a particular factory is emitting excessive SO 2 is much more useful,

for example, than knowing that 24 out of 16 million pixels are polluted.

D. Overview of Re_rt

The following sections outline an experimental scene-analysis

system for performing automated monitoring tasks in aerial and satellite

imagery. The core of the system is the map data base and the capability

for establishing map-image correspondence described in Sections II and

III, respectively. Around this core we have implemented a number of

representative application programs, described in Section IV, that use

map-knowledge to facilitate image analysis. Section V concludes with

two possible scenarios, illustrating how the scene analysis approach to

automated monitoring could help alleviate data-processlng bottlenecks in

NASA's present and contemplated remote sensing operations.



II MAPDATABASE

T_e mapdata base used in this research is essentially a compact

three-dimensional description of the location and shapes of major
landmarks and monitoring sites. Point features, such as road

inLersections, small buildings, and many monitoring sites, are
represented by their three-dimensional world coordinates and (where

applicable) a list of characteristics _o be monitored. Linear

landmarks, such as roads and coastlines, are similarly represented as

curve fragments with associated ordered lists of world coordinates.

Ground coordinates are expressed in a standard reference frame, the UTH
grid, with elevations expressed i_ meters above sea level.* The data

base can be accessed by location (e.g., What is at x, y, z?), by entity

name (e.g., What is the location _f factory x?), and by entity type

(e.g., What factories are there?). Provisions also exist for

associating bacMground information with various map entities such as

visual appearance and function, information normally omitted from

conventional printed maps intended for humanconsumption. (For further
details on map representation, the reader _s directed to Reference [5].)

Our experimental domain throughout this project was the San

Francisco Bay Area, as depicted in Figures 2 and 3. Figure 4 is a

computer display of a simple mapdata base of this samearea. The map

contains a major landmark (the coastline) and numberof representative

monitoring sites, each designated Dy a cross. Longitude and latitude

data for the on-line map were obtained interactively from the USGS map,

using a digitizing table. Elevations were read off the map and entered

manually via keyboard. Although displayed as a continuous trace, the

coastline, in fact, is internally represented by just 100 discrete

sample coordlnates.

The map data base was originally developed for another project

[Ref. 5] and contains a number of sophisticated features not util_zed Jn

this project.

7



Several map data bases, each highlighting specific features (e.g.,

roads, railroad yards, piers) were used in experiments described in this

report. These maps have not yet been integrated into a monolithic data

base, although all software necessary to do so exists (Ref. [5]).

8



FIGURE 2 HIGH-ALTITUDE VERTICAL MAPPING PHOTOGRAPH

OF SAN FRANCISCO BAY AREA

Taken from a U-2 at 45,000 feet

_3I_G]NAE PAGE IS

£7._ ?OOR _BALITY



i

,P, .

/
i

-/

,,.a

_ m

t|.

'ti@, -

• _-.-

t

o

_[
I,.M

>-

0

Z

M,.

Z

I.I.

0

(,J

-i"

n_

0
O.

0

_J

m-

I0 ._i(_I_ cxt, ,:.',t_.v_,_,c-_

._ "I-_-'" _'



RIVER DELTA

(SALT WATER

INTRUSION/SILT

DEPOSITION)

DIRS

(WATER QUALITY,

QUANTITY)

OI L DEPOTS

(SPILLAGE)

FACTORY

(AIR POLLUTION)

RESERVOIR

FIGURE 4
COMPUTER DISPLAY OF A SIMPLE MAP DATA BASE FOR THE SAN FRANCISCO

BAY AREA, SHOWING MAJOR LANDMARK (COASTLINE) AND REPRESENTATIVE
MONITORING SITES (CROSSES}
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III MAP-IMAGE CORRESPONDENCE

The geometric correspondence between map and image, for most

sensors, _ _ be c_a ......_d precisely using a_ analytic camera model.

A typical camera model, as shown in Figure 5, has between five and seven

parameters that specify focal length and the location and orientation of

the camera (in map coordinates) when the image was taken. Once these

parameters are known, the image coordinates corresponding to any map

location can be determined with straightforward trigonometry. (The

camera location and map location jointly define a ray in space. The

intersection of this ray with the image plane

coordinates.)

The traditional method of calibrating a

yields the desired image

camera model requires two

stages: First, a number of known landmarks are independently located in

the image; and second, the camera parameters are computed from the pairs

of corresponding world and image locations, by solving an over-

constrained set of equations [6, 7].

The failings of the traditional method stem from the first

stage: Landmarks are located in the sensed image by correlating with

fragments of reference images. This requires reference images taken

under the same viewing conditions as the current sensed image.

Moreover, since landmarks are found individually, using only very local

context (e.g., a small patch of surrounding image) and with no mutual

constraints, false matches commonly occur. (The restriction to small

features is mandated by the high cost of area correlation and by the

fact that large image features correlate poorly over small changes in

viewpoint.)

A new calibration procedure, called ,'Parametric Correspondence",

was developed that overcomes these failings by integrating the landmark-

A notable exception is the scanning multiband sensor used in LANDSAT.
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matching and parameter solving steps and by using global shape rather

than tonal appearance as the basis for matching. In this procedure,

initial estimates of camera location and orientation are obtained on the

basis of available navigational data. The camera model is then used to

predict the appearance of landmarks in an image for this assumed

viewpoint. Calibration is achieved by adjusting the camera parameters

(i.e., the assumed

landmarks optimally

im:age.

viewpoint) until

match a symbolic

the predicted appearances of the

description extracted from the

A detailed description of parametric correspondence is given in

Appendix I. However, the essential ideas can be quickly grasped through

an example. Figure 6 illustrates the process of establishing

correspondence between the symbolic map of Figure 4 and the sensed image

of Figure 2, using the coastline as a landmark.

First, a simple edge follower was used to trace the high contrast

coastline in Figure 2, producing the edge image shown in Figure 6(a).

Next, using initial camera parameter values (estimated manually from

navigational data provided with the image), the coastline coordinates in

the map were transformed into corresponding image coordinabes and

overlaid on the extracted edge image [Figure 6(b)]. The average mean

square distance between the extracted coastline and that predicted on

the basis of the assumed viewpoint was seven pixels. A straightforward

hill-climbing algorithm then adjusted the camera parameters to minimize

this average distance. Figure 6(c) shows the final state, in which the

average distance has been reduced to 0.8 pixel.

Using the final parameter values, it is now possible to determine

within a pixel the precise image locations corresponding to each

monitoring site in the map. Only three sites are actually visible in

this image: the two oil depots and the coffee factory. These are shown

in Figure 6(d), superimposed on the original image.

Figures 7 and 8 provide two additional examples of the calibration

process, illustrating its ability to accommodate arbitrary viewpoints.

The apparent misregistrations in Figures 6(c), 7(c), and 8(c) are

15



actually the result of errors in contour extraction [Figures 6(a), 7(b),

and 8(b), respectively]; despite such errors, the global matching

criteria is still able to achieve subpixel accuracy of the projected map

points.

The relative merits of parametric correspondence and other

approaches to map-image correspondence are discussed at length in

Appendix A. However, three principal strengths (viz., computational

cost, robustness, and storage economy) are worth noting briefly here:

* Computational Cost -- Determining image locations by

projecting a map through a camera model entails far less

computation than by warping an image into correspondence

with a reference image because there are typically orders

of magnitude fewer map coordinates than image pixels to

transform. Warping, moreover, is only an approximation to

correspondence that breaks down when reference and sensed

images differ significantly in viewpoint.

, Robustness -- Parametric correspondence appears robust

compared with correlatlon-based techniques for landmark

matchiag because it relies on global shape features that

are relatively immune to seasonal and diurnal variation and

to ambiguous matches. Furthermore, because shapes are

projected through the camera model before matching,

distortions resulting from viewpoint are not a problem.

* Storage Economy -- Parametric correspondence permits

significant storage economies--first, because a three-

dimensional map typically contains much less data than a

reference image; and second, because multiple reference

images may be required to handle a range of viewing

situations (viewpoint, sensors, sun angle, and so forth),

whereas a single map will suffice. The storage factor may

be critical in applications covering extensive geographic
areas.

16



ORIGINAL PAGI_ I_

D,v:.eOOR QUA/dT_

(a) COASTLINE EXTRACTED BY BOUNDARY

FOLLOWER

(b) PREDICTED IMAGE COORDINATES

OF COASTLINE, (BASED ON NAVIGATIONAL

ESTIMATES OF CAMERA LOCATION

AND ORIENTATION) SUPERIMPOSED

ON EXTRACTED BOUNDARY

(c) PREDICTED COASTAL COORDINATES

AFTER OPTIMIZATION OF CAMERA

PARAMETERS

(d) PREDICTED IMAGE LOCATIONS

OF VISIBLE MONITORING SITES

BASED ON OPTIMIZED PARAMETERS

FIGURE (_ PAh;AMETRIC CORRESPONDENCE: EXAMPLE I
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(a) OBLIQUE VIEW OF SAN FRANCISCO BAY
LOOKING WEST FROM ALAMEDA
(FOREGROUND)

(b) NAVIGATION-BASED PREDICTION
OF COASTLINE COORDINATES SUPERIMPOSED
ON EXTRACTED COASTLINE

(c) PREDICTED COASTLINE COORDINATES
AFTER OPTIMIZATION OF CAMERA
PARAMETERS

(d) PREDICTEO IMAGE LOCATIONS
OF VISIBLE MONITORING SITES

FIGURE 7 PARAMETRIC CORRESPONDENCE: EXAMPLE 2
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(a)

II

HIGH ALTITUDE OBLIQUE VIEW OF SAN

FRANCISCO BAY LOOKING EAST FROM THE

PACI FIC OCEAN

(b| NAVIGATION-BASED PREDICTION

OF COASTLINE COORDINATES

SUPERIMPOSED ON EXTRACTED
COASTLINE

it) PREDICTED COASTLINE COORDINATES

AFTER OPTIMIZATION OF CAMERA

PARAMETERS

(d) PREDICTED IMAGE LOCATIONS OF

VISIBLE MONITORING SITES

FIGURE 8 PARAMETRIC CORRESPONDENCE: EXAMPLE 3
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IV MAP-GUIDED MONITORING

Having placed the image into parametric correspondence with the

three-dimensional map, it is possible to predict the _mage coordinates

of any feature in the map and, conversely, to predict the map features

corresponding to any point in the image. Given this capability, many

basic monitoring tasks of the type discussed in previous sections can be

automated using straightforward image-analysis techniques. Four generic

classes of tasks will be considered to illustrate the use of map-

guidance in remote sensing.

A. Pixel Classification _asks

In pixel classification tasks, conventional multispectral analysis

techniques are applied at designated image locations to detect abnormal

states. In Figure 8(d), for example, one could, in principle, test the

pixels located in reservoirs for water quality, the pixels located in

sh_pping channels beside oil depots for evidence of spillage, the pixel

located at the industrial plant for evidence of particulates, and the

pixel located at the Sacramento River Delta for evidence of salt water

intrusion.

The above examples are merely illustrative; their feasibility

depends on the availability of sensory data with suitable spectral and

spatial resolution. (Readers interested in such applications are

referred to the vast remote sensing literature on mult_spectral

classification, as discussed and referenced in [8]). Of interest here

is the principle of using map knowledge to constrain where to look and

what to look for in an image. In pixel classification tasks, the

primary advantages of map guidance are the computational efficiency

gained by restricting analysis to relevant pieces of the image and the

utility gained by being able to associate findings with particular

21



geographical entities (e.g., factory X is emitting S02)" However, for
other, more complex tasks, the advantages are more profound.

B. BoundarZ and Line Verification Tasks

An important requirement in many monitoring tasks is the need to

determine the precise path through an image of a linear feature (e.g.,

coastline, river, road) whose location and shape are known, perhaps only

_pproximately, from a map. Monitoring the water level of reservoirs and

the traffic density on roads are two representative applications of

boundary and line verification, respectively. Map knowledge can be used

in such tasks to facilitate both the process of locating the boundary in

the image and the subsequent interpretation of boundary characteristics

in terms significant to a particular application. These uses will now

be illustrated in the context of the two aforementioned tasks.

I. Rese<voir MQnitoring

Consider first the problem of determining the water level of a

reservoir. Water level, of course, is not directly measurable from an

aerial image; some additional information or constraint is needed. The

required information can be obtained from a terrain map in registration

with the image.

As the water level rises and falls, the outline of the

reservoir expands and contracts in a predictable way to follow the

elevation contours of the terrain (see Figure 9). Thus water level can

be determined by extracting the outline of the reservoir in the image

and determining its location with respect to known elevation contours.

Knowing the water level, one can then integrate over the corresponding

region of flooded terrain to determine the volume of stored water. (The

function relating water volume and water level is monotonic and can be

tabulated for each reservoir.)

Since the surface of a reservoir is flat, the water level can

be determined without a complete outline; the image coordinates of even

a single point on the reservoir boundary would, in principle, suffice.

22



In practice, elevations are determined for a numberof boundary points

and averaged together to compensatefor statistical uncertainties i_

estimating the precise _mage coordinates of each boundary point. The

distribution of elevations, which should be t_ghtly clustered, provides

a check on the quality of the map-image correspondence.

Boundary samples are concentrated where terrain slope is most

gradual to maximize the sensitivity of edge location to changes in water

level. [See Figure 9(b).] The image coordinates corresponding to each

selected boundary site are determined to subpixel precision by analyzing

the gradient of image intensity along a line perpendicular to the

elevation contours at that site. The analysis can be restricted in

practice to a contour interval bracketing the water level observed in a

previously analyzed image. This constraint not only reduces computation

but also serves as an effective contextual filter for discriminating

irrelevant intensity discontinuities arising, for example, from other

nearby bodies of water. (Theoretical issues that enter into determining

boundary locations to _:bpixel accuracy using map knowledge are

discussed in Appendix B.)

The terrain elevation corresponding to a detected boundary

point is obtained by linearly interpolating the elevations of the

terrain contours used to delimit boundary detection. If the elevation

_nterval is large (say over te, 2eet), the interpolation can be iterated

using progressively narrower interva_ _ to obtain a more accurate

elevation estimate. (An alto-native technlque for determining water

level, in which extracted boundary points are matched globally to the

shapes of possible contour lines, is described in Appendix B.)

steps:

In summary, the basic reservoir monitoring procedure has four

(I) Establish geometric correspondence between the

sensed image and a contour map - the terrain. Correspondence

must be based on geograph_cally stable landmarks unrelated to

reservoir boundaries.

(2) Determine the precise image coordln3tes of selected

points on the reservoir boundary.

23



(3) Determine the water level corresponding to each
boundary point by interpolating the elevations of bracketing
contours.

(4) Determine the water volume corresponding to the
determined water level by performing a table lookup.

Steps (2)-(4) would be repeated for each reservoir in an image.

The above procedure was implemented and tested on a set of

images of Briones reservoir [the rightmost of the twin reservoirs in the

upper center of Figure 8(d)]. Figure 10(a) is a higher resolution image
of the Briones shoreline with elevation contours superimposed. The

lines _n Figure 10(b) indicate selected perpendiculars between the 500
and 550 elevation contours where the terrain _ope is most gradual. The

location of the land/water boundary along each of these lines was

assigned to the point of maximal intensity discontinuity, as shownin

Figure I0(c). The water level corresponding to each boundary point was

computedby interpolation resulting in the distribution of levels shown

in Figure IO(d).

The meanwater level in the present image of Briones, based on

interpolating 170 boundary points, was determined to be 523.8 feet.

This is within a foot of the ground-truth figure provided by the

reservoir operator and corresponds to about a one percent error in
volume. The accuracy of this approach is limited by the accuracy of the

terrain map, the quality of map-imagecorrespondence, and the precision
with which the land/water interface can be located in an image. These

factors are discussed further in Appendix B.

Although monitoring reservoirs by satellite may not yet be

cost-competitive with conventional ground-based approaches, there are

other equally important applications of map-guided boundary verification

for which no practical alternatives currently exist. Some examples

include the monitoring of river widths (and heights) for flood threat,

the monitoring of coastlines for erosion, and the monitoring of river
deltas for excessive silt deposit. Unlike reservoir monitoring,

extensive manual ground-based monitoring is not economically feasible in

these applications.

24



(a) PROFILE VIEW

(b) TOP VIEW

FIGURE 9 RELATIONSHIP OF WATER LEVEL TO TOPOGRAPHY OF TERRAIN
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TERRAIN CONTOURS SUPERIMPOSED

ON IMAGE OF BRIONES RESERVOIR.

THE ACTUAL WATER HEIGHT IS

524 FEET ABOVE SEA LEVEL

(b) LINES DESIGNATING LOCATION

FOR DETERMINATION OF LAND-WATER

BOUNDARY

Ic) LOCATIONS OF LAND-WATER BOUNDARY

ASSIGNED TO POINTS OF HIGHEST LOCAL

GRADIENT ALONG LINES SHOWN

IN FIGURE 10(b)

(d) DISTRIBUTION OF WATER LEVELS

CORRESPONDING TO BOUNDARY LOCATIONS

IN FIGURE 19(¢) AS DETERMINED

BY INTERPOLATION (x-axis - elevation,

10 feet/division; y-axis = 1 sample/division)

FIGURE 10 WATER LEVEL PROFILES FOR BRIONES RESERVOIR
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2. Road Monitoring

Periodic surveillance of road traffic is an important task In

an automobile-dependent society. An obvious prerequisite for road

monitoring is to determine the path of the road in t,i_ _mage.

Conventional sequential line-tracklng algorlthms are unsuited

to this task because they are easily sidetracked whenever either the

local evidence for a line is weak or other lines are present in close

proximity. These contingencies arise frequently in aerial imagery

because roads are usually clustered into networks and pass regularly

through heavily textured areas where one or even both edges may be

locally obscured. They can be overcome, however, by exploiting map-

knowledge.

Since maps often suppress detail, a technique is needed that

can use a rough prediction of the path of the road to guide lts

determination of the precise path. The problem requirements differ

somewhat from those encountered in extracting reservoir boundaries in

that a thin linear feature is involved and a continuous path Is needed.

With these requirements in mind, we developed (under _RPA

support) a line-traclng algorithm that uses map guidance to constrain

the analysis to relevant parts of the image and to bridge gaps where

local evidence is weak or ambiguous. The algorithm operates by applying

specially developed llne and edge detectors in the vicinity of an

approximate path predicted by the map and then uses a parallel dynamic

programming algorithm to find a globally optimal path through the local

feature values. Further technical details can be found In Ref. [9].

Figure I] shows the tracing algorithm in action. Figure 11(a)

is an aerial image of a rural area

mapping project. The portion shown

plxels (representing 20-foot squares

256 brlghtness levels.

taken for a U. S. Geological Survey

has been digitized into 256 x 256

on the ground), each having one of

Figure 11(a) shows a predicted road path one might obtain from

a map wlth standard (50-foot) cartographic accuracy. A local line
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detector was applied at all image points within a band centered on this

guideline. The system then found the lowest-cost path from the start of

the guideline to the finish, where the incremental path cost between

adjacent image points was an inverse function of the local line detector

score. The path so traced is displayed in Figure 11(b). Figure 11(c)

shows the result of tracing many of the roads visible in the image.

Note that the program has traced the center line of the wide road and

that it has performed extremely well in areas in which the road is faint

or partially obscured, such as at the lower left and the upper right of

the image. Figure 11(d) shows the results of guided road tracing in an

urban area containing many intersecting streets. The tracings have been

fitted with straight line segments to cartographic accuracy. The

results here, too, are extremely good.

Although we have performed only a limited number of

experiments with guided tracing, the results have been most encouraging.

The system is capable of tracing linear features that are hard even for

a human to discern through a wide range of terrain types and

envlrorLBents. It needs relatively little guidance; but the more

guidance it is given, the more reliable and efficient is its

performance. It can accept guidance Interactively (via light pen), as

well as from preexisting maps. Interactive guidance is helpful in map-

making applications, allowing new roads to be carefully digitized, based

on a crudely sketched guideline.

Guided road tracing is a key step in automating traffic

monitoring. Given the road path, vehicle detection can be accomplished

by analyzing the intensity variations along the road [10]. More

generally, map-guided tracing of linear features is a requirement that

arises in a variety of other' remote sensing tasks; for example, in the

monitoring of rivers and railroad lines. Given suitable operators for

detecting local evidence, the global road-tracing algorithm should also

work in these other line tracing appllcations.
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(a) A RURAL ROAD WITH GUIDELINE (b) OUTPUT OF GUIDED TRACING ALGORITHM

(cl GUIDED TRACING OF SEVERAL RURAL
ROADS

(d) GUIDED TRACING OF SEVERAL URBAN
STREETS

FIGURE 11 GUIDED ROAD TRACING
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C. Oblect Verifica%lon Task_

Railroad and highway monitoring are two examples of a generic class

of remote sensing applications we shall call object verification tasks.

Such tasks entail the detection, mensuration, or counting of specified

entities whose possible locations and orientations in the image are

constrained by map knowledge. The general approach is to determine the

image coordinates for a reference structure (such as a railroad track,

ship berth, or road) and then apply special-purpose operators to detect

objects of interest (such as boxcars, ships, or cars). For example, we

have implemented a boxcar-counting routine that analyzes the intensity

profiles along predicted paths of railroad track in an image, looking

for possible ends of trains and gaps between cars. Such events usually

appear as step changes in brightness and dark, transverse lines,

respectively. Hypothesized gaps and ends are interpreted in the context

of knowledge about trains (e.g., standard car lengths and allowed inter-

car gap widths) and about the characteristics of empty track to prune

artifacts and improve the overall reliability of interpretation. The

program then reports the number of cars classified by length [9]. We

have also Implemented a shlp-monitoring program that analyzes intensity

patterns alongside predicted berth locations in a harbor to distinguish

ships from water. (Water characteristically has a low density of edges,

[11].) Railroad monitoring is illustrated in Figure 12 and ship

monitoring in Figure 13.

The demonstrations of

implemented as part of

photointerpretation and are

and power of the map-guided

boxcar-counting and ship monitoring were

ARPA-sponsored research on automated

summarized here to emphasize the generality

approach. The key to automating both tasks

lies in using map-knowledge to define a highly constrained context

(i.e., area of the image) in which relatively simple tests can be used

to distinguish objects of interest. Knowing the locations of tracks,

for example, reduces the task of boxcar counting to a one-dlmensional,

template-matching problem. We believe that boxcar counting and ship

monitoring are representative of a broad class of object-veriflcation
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FIGURE 12 AUTOMATED BOXCAR COUNTING

Lines indicating track locations were traced interactively in this example but would,

in general, be obtained by putting image in correspondence with a three-dimensional

map of the railyard, as in the ship example of Figure 13. Statistical operators are

flown along tracks to detect dark transverse lines that are characteristic of gaps between

boxcar_. Boxcars are indicated by dots whenever the spacing between hypothesized gaps

is consistent with knowledge of standard car lengths.
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FIGURE 13

SA-5300-42 SA-5300-43

AUTOMATIC SHIP MONITORING

The guidelines indicating known berth locations were obtained for both images from
the same three-dimensional map of Oakland Harbor, based on determination of

viewpoint for each image. The dark, wiggly lines beside the berths indicate regions of

high edge content, characteristic of ships.
.ORIGINAE PAGE IS

OF, POOR QUALITy
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tasks that includes counting planes on runways and cars on highways, for

which similar monitoring programs can be developed.
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V CONCLUDING COMMENTS

This report has described a scene-analysis approach _'or automating

an important class of remote sensing tasks involving long-term

monitoring of predefined ground sites. The key idea is the use of map

knowledge to help locate the monitoring sites in an image. Knowing

where to look often makes it possible to:

(I) Drastically reduce computation,

(2) Transform complex interpretation tasks into simple

detection problems,

(3) Significantly enhance the utility of results by

associating them with specific, geographically localized

entities.

With map-guidance, many previously intractable monitoring tasks become

feasible and, in some cases, even easy to automate.

The location of monitoring sites is accompl_shed by calibrating an

analytic camera model on distinctive landmarks and then using the model

to transform between reference map and image coordinates. This approach

has significant advantages over the conventional one of warping the

sensed image into correspondence with a reference image, most notably in

terms of reduced computational requirements and increased invariance to

viewing conditions.

The examples in this report should be regarded as demonstrations of

concept as opposed to feasibility; further engineering studies are

required to evaluate costs and performance under operational conditions.

If such experiments substantiate our preliminary conclusions, the

consequent payoff may be substantial.

The accelerating rate at which image data are being collected poses

an increasingly difficult problem for NASA and other government

agencies. Already, the volume of data collected far exceeds the

5g
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resources available for analysis. It has been estimated, for example,

that only about one percent of the image data currently collected by

LANDSAT is ever interpreted, Computer resources are saturated just

keeping up with the routine data-processing aspects of image acquisition

(rectification, storage, retrieval, distribution), and have remained so,

despite years of investment in ever faster and more expensive data-

processing hardware.

Buried within the masses of collected data is a relatively small

amount of valuable information that justifies the whole enterprise of

remote sensing. Clearly, the rich promise of remote sensing will not be

realized unless an automatic means can be developed for extracting this

information and distributing it in timely fashion to interested users.

Two possible scenarios for accomplishing this objective, based on

concepts developed in this report, are outlined in Figure 1_. In the

first scenario, existing ground-based, data-processlng facilities would

be augmented to perform a variety of map-gulded monitoring tasks

automatically as new ima6ery arrived. The incremental computational

load would be very modest; a prototype system mould be in operation as

early as 1980.

The second scenario is longer range (10 to 15 years) and envisions

a series of application-speciflc satellites, with sensors and orbits

optimized for particular monitoring tasks. Information could be

extracted on board and relayed direct to Interested users via

communication satellites.

The feasibility of on-board processing rests in part on the

dramatic advances anticipated in LSI technology and in part on the

dramatic reductions in computational requirements made possible by the

concept of map-gulded image analysis. The principal advantage of on-

board processing is that it completely eliminates ground-based, data-

processing bottlenecks for those monitoring tasks where the actual

imagery is not essential.
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NEAR TERM

{APPROXIMATELY 5 YEARS)

MULTIPURPOSE

SATELLITE

GROUND-BASED

ANALYSIS

INFORMATION DISTRIBUTED TO USERS

_/IA CONVENTIONAL TELECOMMUNICATIONS

POLLUTION

WATER

RESOURCES

FORESTRY

INTERMEDIATE TERM

(10 TO 15 YEARS! g

DEDICATED

SATELLITES

ONBOARD

PROCESSING

INFORMATION RELAYED DIRECT

TO SUBSCRIBERS VIA COMMUNICATIONS SATELLITE

FIGURE 14 SCENARIOS FOR EXPLOITING SCENE ANALYSIS
IN AUTOMATED MONITORING TASKS
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Both scenarios represent an important broadening of NASA's

traditional role as a supplier of data to encompass the additional

responsibilities of extraction and distribution of information. For

routine monitorir_ tasks with large user constit¢3ncies, centralized

information extraction should signifficantly reduce the overheads of

storing, retrieving, and distributing large volumes of dat_. Moreover,

it would eliminate the need for installing image analysis facilities at

many user sites. Information extraction and distribution seem destined

to play increasingly important roles in NASA's future.
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Appendix A

PARAMETRIC CORRESPONDENCE AND CHAMFER MATCHING:

TWO NEW TECHNIQUES FOR IMAGE MATCHING

(previously published _s Technical Note I_3)

I. I_qt('oduc%i031

Many tasks involving pictures require the ability to put a sensed

image into correspondence with a reference image or map. Examples

Include vehicle guidance, photo interpretation (change detection and

monitoring), and cartography (map updating). The eonventlonal approach

is to determine a large number of points of correspondence by

eorrelatlng small patches of the reference im_e with the sensed image.

A polynomial interpolation is then used to estimate correspondence for

arbitrary intermediate points [Bernsteln]. This approach is

eomputatlonally expensive and limited to cases where the reference and

sensed Imaees were obtained under slmilar

particular, it cannot match images obtained

viewpoints, senjors, or seasonal or climatic

match images against symbolic maps.

viewing conditions. In

from radically different

conditions; and it cannot

Parametric correspondence matches images to a symbolic reference

map, rather than a reference image. The map contains a compact three-

dimensional representation of the shape of major landmarks, such as

coastlines, bu_Idlngs, and roads. An _nalytlc camera model is used to

predict the location and appearance of landmarks in the image,

generating _ projection for an assumed viewpoint. Correspondence is

achieved by adjusting the parameters of the camera model (i.e., the

assumed viewpoint) until the appearances of the landmarks optimally

match a symbolic description extracted from the Image.

The success of tbls approach requires the abillty to rapidly match

predicted and sensed appearances after each projection. The matching of

image and map features is performed by a new technique, called "chamfer

L!'_
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matching", that compares the shapes of two collections of curve

fragments at a cost proportional to linear dimension, rather than area.

In principle, this approach should be superior, since it exploits

more knowledge of the invarlant three-dimenslonal structure of the world

and of the imaging process. At a practical level, this permits matching

of spatially extensive features on the basis of shape, which reduces the

risk of ambiguous matches and dependence on viewing conditions.

2. Ch_nfer Matching

Point landmarks, such as intersections or promontories, ape

represented in the map with their associated three-dlmensional world

coordinates. Linear landmarks, such as roads or coastlines, ape

represented as curve fragments with associated ordered lists of world

coordinates. Volumetrlc structures, such as buildings or bridges, are

represented as wire-frame models.

From a knowledge of the expected viewpoint, a prediction of the

image can be made by projecting _:ld coordinates into corresponding

image coordinates, suppressing hidden lines. The problem in matching Is

to determine how well the predloted features _orrespond with image

features, such as edges and lines.

The first step is to extract image features by applying edge and

line operators or tracing boundaries. Edge fragment linking [Nevatla,

Perkins] or relaxation enhancement [Zucker, Barrow] is optional. The

net result is a feature array each element of which records whether or

not a line fragment passes through it. This process preserves shape

information and discards greyscale information, which is less Invariant.

To correlate the extracted feature array directly with the

predicted feature array would encounter several problems: The

correlation peak for two arrays depicting identical linear features is

very sharp and, therefore, intolerant of slight mlsallgnment or

distortion (e.g., two lines, slightly rotated with respect to each

other, can have at most one point of correspondence) [Andrus]; a sl_arply
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peaked correlation surface is an Inappropriate optimization criterion

because it provides little indication of closeness to the true match nor

of the proper direction in which to proceed; computational cost is heavy

with large feature arrays.

A more robust measure of similarity between the two sets of feature

points is the sum of the distances between each predicted feature point

and the nearest image point. Thls can be computed efficiently by

transformlng the image feature array into an array of numbers

representing distance to

simllarlty measure Is then

of predicted features and

the predicted locations.

the nearest image feature point. The

easily computed by stepping throuEh the llst

simply summing the distance array values at

The distance values can be determined in two passes through the

image feature array by a process known as "chamfering" [Munson,

Rosenfeld]. The feature array (F[l,j], i,j=1,N) is initially two-

valued: 0 for feature points and infinity otherwise. The forward pass

modifies the feature array as follows:

FOR I 2 STEP 1 UI_TIL N DO

FOR J _ 2 STEP ; UmTIL N DO

F[i,j] _ MINIMUM(F[I,J], (F[i-l,J]+2),

(F[i-l,J-t ]+3), (F[l,J-1 ]+2),

(F[i+ . -I ]+3));

Similarly, the backward pass operates as follows:

FOR i (N-I) STEP -1 UNTIL 1 DO

FOR j _ (N-I) STEP -I UNTIL I DO

F[i,j] _ MINIMUM(F[I,J], (F[i+1,j]+2),

(F[i+1,j+1]+3), (F[i ,j÷l ]+2),

(F[i-1,J+1 ]+3)) ;

The incremental distance values of 2 and 3 provide relative distances

that approximate the Euclidean distances I and the square root of 2.

Chamfer matching provides an efficient way of computing the

integral distance (i.e., area), or integral squared distance, between

two curve fragments, two commonly used measures of shape similarity.

Note that the distance array is coaputed only once, after image feature

extraction.
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3. Parametric Correspondence

Parametric correspondence puts an image into correspondence with a

three-dimensional reference map by determining the parameters of an

analytic camera model (3 position and 3 orientation parameters).

The traditional method of calibrating the camera model takes place

in two stages: first, a number of known landmarks are independently

located in the image; and second, the camera parameters are computed

from the pairs of corresponding world and image locations by solving an

over-constrained set of equations [Sobel, Quam, Hannah].

The failings of the traditional method stem from the first stage.

The landmarks are found individually, using only very local context

{e.g., a small patch of surrounding image) and with no mutual

constraints. Thus local false matches commonly occur. The restriction

to small features is mandated by the high cost of area correlation and

by the fact that large image features correlate poorly over small

changes in viewpoint.

Parametric correspondence overcomes these failings by integrating

the landNark-matching and camera-calibration stages. It operates by

hill-climbing on the camera parameters. A transformation matrix is

constructed for each set of parameters considered; and it is used to

project landmark descriptions from the map onto the image at a

particular translation, rotation, scale and perspective. A similarity

score is computed with chamfer matching and used to update parameter

values. Initial parameter values are estimated from navigational data.

Integrating the two stages allows the simultaneous matching of all

landmarks in their correct spatial relationships. Viewpoint problems

with extended features are avoided because features are precisely

projected by the camera model prior to matching. Parametric

correspondence has the same advantages as rubber-sheet template matching

[Fischler, Widrow] in that Jt obtains the best embedding of a map in an

image but avoids the combinatorics of trying arbitrary distortions by

only considering those corresponding to some possible viewpoint.
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4. An Example

The following example illustrates the major concepts in chamfer

matching and parametric correspondence. A sensed image (Figure A-I) was

input along with manually derived initial estimates of the camera

parameters. A reference map of the coastline was obtained, using a

digitizing tablet to encode coordinates of a set of 51 sample points on

a USGS map. Elevations for the points were entered manually. Figure A-

2 is an orthographic projection of this three-dimensional map.

A simple edge follower traced the high contrast boundary of the

harbor, producing the edge picture shown in Figure A-3. The chamfering

algorithm was applied to this edge array to obtain a distance array.

Figure A-4 depicts this distance array; distance is encoded by

brightness with maximum brightness corresponding to zero distance from

an edge point.

Using the initial camera parameter estimates, the map _s projected

onto the sensed image (Figure A-5). The average distance between

projected points and the nearest edge point, as determined by chamfer

matching, was 25.8 plxels.

A straightforward optimization algorithm adjusted the camera

parameters, one at a time, to minimize the average distance. Figures A-

6 and A-7 show an intermediate state and the final state, in which the

average distance has been reduced to 0.8 pixel. This result, obtained

with 51 sample points, compares favorably with a 1.1 pixel average

distance for 19 sample points obtained using conventional image chip

correlation followed by camera calibration. The curves in Figure A-8

characterize the local behavior of this minimum, showing how average

distance varies with variation of each parameter from its optimal value.

Approximately 60 iterations (each involving a parameter adjustment and

reprojectlon) were required for this example. The number of iterations

could be reduced by using a better optimization algorithm; for example,

a gradient search.
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5. Discussion

We have presented a scheme for establishing correspondence between

an image and a reference map that integrates the processes of landmark

matching and camera calibration. Tne potential advantages of this

approach stem from I) matching shape, rather than brightness, 2)

matching spatially extensive features, rather than small patches of

image, 3) matching simultaneously to all features, rather than searching

the combinatorial space of alternative local matches, and 4) using a

compact three-dimensional model, rather than many two-dimensional

templates.

Shape has proved to be much easier to model and predict than

brightness. Shape is a relatively invariant geometric property whose

appearance from arbitrary viewpoints can be precisely predicted by the

camera model. This eliminates the need for multiple descriptions,

corresponding to different viewing conditions, and overcomes

difficulties of matching large features over small changes of viewpoint.

The ability to treat the entirety of the relevant portion of the

reference map as a single extensive feature reduces significantly the

risk of ambiguous matches and avoids the combinatorial complexity of

finding the optimal embedding of multiple local features.

A number of obstacles have been encountered in reducing the above

ideas to practice. The distance metric used in chamfer matching

provides a smooth, monotonic measure near the correct correspondence and

nicely interpolates over gaps in curves. However, scores can be

unreliable when image and reference are badly out of alignment. In

particular, discrimination is poor in textured areas, aliasing can occur

with parallel linear features, and a single isolated image feature can

support multiple reference features.

The main problem is that edge position is not a distinguishing

feature, and consequently many alternative matches receive equal weight.

One way of overcoming this problem, therefore, is to use more

descriptive features: brightness discontinuities can be classified, for
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example, by orientation, by edge or line, and by local spatial context

(texture versus isolated boundary). Each type of feature would be

separately chamfered, and map features would be matched in the

appropriate array. Similarly, features at a much higher level could be

used, such as promontory or bay, area features having particular

internal textures or structures, and even specific landmarks, such as

"the top of the Transamerlca pyramid". Ideally, with a few highly

differentiated features distributed widely over the image, the

parametric correspondence process would be able to home in directly on

the solution regardless of initial conditions.

Another dimension for possible improvement is the chamfering

process itself. Determining for each point of the array a weighted sum

of distances to many features {e.g., a convolution with the feature

array), instead of the distance to the nearest feature, would provide

more immunity from isolated noise points. Alternatively, propagating

the coordinates of the nearest point instead of merely the distance to

it, it becomes possjbi_ to use characteristics of features, such as

local slope or curvature, In evaluating the goodness of match. It also

makes possible a more directed search, since corresponding pairs of

points are now known; an improved set of parameter estimates can be

analytically determined.

Chamfer matching and parametric correspondence are separable

Lechniques. Conceptually, parametric correspondence can be performed by

re-projecting image chips and evaluating the match wit_ correlation.

However, the cost of projection and matching grows with the square of

the template size: the cost for chamfer matching grows linearly with the

number of feature points. Chamfer matching is an alternative to other

shape-matching techniques, such as chain-code correlation [Freeman],

Fourier matching [Zahn], and graph matching [e.g., Davis]. Also, the

smoothing obtained by transforming two edge arrays to distance arrays

via chamfering can be used to improve the robustness of conventional

area-based edge correlation.
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Parametric correspondence, in its most general form, is a technique

for matching two parametrically related representations of the same
geometric structure. The representations can be two- or three-

dimensional, iconic or symbolic; the parametric relation can be

perspective projection, a simple similarity transformation, a polynomial
warp, and so forth. This view is similar to rubber-sheet template

matching as conceived by Fischler and Widrow [Fisch!er, Widrow]. The
feasibility of the approach in any application, as Widrow points out,

depends on efficient algorithms for "pattern stretching, hypothesis

testing, and pattern memory", corresponding to our cameramodel, chamfer

matching, and three-dimensional map.

As an illustration of its versatility, the technique can be used

with a known camera location to find a known object whose position and

orientation are Known only approximately. In this case, the object's

position and orientation are the parameters; the object is translated

and rotated until its projection best matches the image data. Such an

application has a more iconic flavor, as advocated by Shepard [Shepard],

and is more integrated than the traditional feature extraction and graph

matching approach [Roberts, Falk and Grape].

As a final consideration, the approach is amenable to efficient

hardware implementation. There already exists commercially available

hardware for generating parametrically specified perspective views of

wire frame models at video rates, complete with hidden line suppression.

The chamfering process itself requires only two passes through an array

by a local operator, and match scoring requires only summing table

lookups in the resulting distance array.

6. Conclusion

Iconic matching techniques, such as correlation, are known for

efficiency and precision obtained by exploiting all available pictorial

information, especially geometry. However, they are overly sensitive to

changes in viewing conditions and cannot make use of non-p_ctorial

information. Symbolic matching techniques, on the other hand, are more
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robust because they rely on invarlant abstractions; but they are less

precise and less efficient in handling geometrical relationships. Their

applicability in real scenes is limited by the difficulty of reliably

extracting the invariant description. The techniques we have put

forward offer a way of combining the best features of iconic and

symbolic approaches.
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FIGURE A-1 AERIAL IMAGE OF A SECTION OF COASTLINE

FIGURE A-2 SET OF SAMPLE POINTS TAKEN FROM A USGS MAP
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FIGURE A-3 THE TRACED BOUNDARY OF THE COASTLINE

FIGURE A-4 DISTANCE ARRAY PRODUCED BY CHAMFERING THE BOUNDARY
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FIGURE A-5 INITIAL PROJECTION OF MAP POINTS ONTO THE IMAGE

FIGURE A--6 PROJECTION OF MAP POINTS ONTO THE IMAGE AFTER SOME
r) ,"A= JU:_TMENT OF CAMERA PARAMETERS
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FIGURE A-7 PROJECTION OF MAP POINTS ONTO THE IMAGE AFTER OPTIMIZATION

OF CAMERA PARAMETERS

FIGURE A-8 BEHAVIOR OF AVERAGE DISTANCE SCORE WITH VARIATION OF THE

SIX CAMERA PARAMETERS FROM THEIR OPTIMAL VALUES
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Appendix B

USINGMAPKNOWLEDGETOLOCATEBOUNDARIES
TOBETTER-THAN-IMAGE-RESOLUTIONACCURACY

I. Introduction

There are many remote sensing applications in which one would like

to locate the boundaries of known objects or terrain features to a

precision exceeding the available image resolution. Typically, this

situation occurs when there is a requirement to make precise

measurements but the resolution required to make the measurements

directly is excessive or impractical.

This appendix discusses an approach for automatically determining

the boundary location of known objects to "subpixel" accuracy and

describes ae experiment in which it was applied to the problem of using

aerial photography to measure water levels of reservoirs.

To determine boundary location beyond the available image

resolution, some additional information or constraint must be used as

the basis for making the desired determination by indirect means. In

this appendix it will be assumed that th_s additional information is

knowledge of the exact shape of the relevant features or objects, up to

some unknown parameter. For example, the object of interest might be

known to be a circle (or cylinder), and we wish to determine its

_iameter. In the example to be described later, we employed a

(supposedly) very accurate contour map of a geographic area containing a

reservoir, which provides the possible shapes that could be ass_ed by

the reservoir land/water boundary as a function of water level. Global

shape matching provides the means for accurately determining boundary

location and thus water level. Knowing water level, the contour map can

then be used to compute the volume of stored water, if this is desired.
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2. Fundamental

The problem of determining boundary location can be partitioned

into two separate tasks: making local estimates of boundary location,

then combining these local estJmatps to make a globally best selection

from a given set of possible boundacy _hapes. As we will discuss later,

the critical requirement in maklng the local boundary estimates is that

the errors be unbiased about the "true" boundary location. This can

only be ensured by having a valid model of the relation between the

nature of the actual boundary and its appearance in the image.

In greater detail, the Issues in local boundary estimation are:

What is a suitable model for the appearance of an edge in

an aerial image (ideal appearance perturbed by the noise

and distortions of the imaging process)?

• What is the relationship between the appearance of the edge

in the image and its actual location referenced to the

image plane (where is the precise edge transltlon, given

the Jntenslty pattern indicating an edge)?

n What Is a suitable algorithmic technique for locating the

actual edge boundaries automatically (the description of a

dec_slon procedure for estimating edge point location Jn a

noisy, sampled, quantized image)?

R What is the nature of the errors we can expect from our

decision procedure, and how can we experimentally verify

its performance?

Given unbiased local boundary estimates (and assuming that the

errors Jn our reference shapes are also unbiased), the problem of making

an optimal global decision has three aspects:

m Selecting the criteria for deciding which choice is best

(we will employ a maximum likelihood criteria).

Detecting and eliminating

estimates, which are in

reference shapes).

* Matchlng the reference

estimates.

An effective algorithm for

and will be described later.

bad data (i.e., local boundary

obvious disagreement with the

shapes to the local boundary

accomplishing the above has been developed
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3. ModelinK EdKe Appearance

Two factors must be considered in making local boundary

estimates: the appearance of boundary as determined by the

characteristics of the imaging sensor (as well as by the physical nature

of the boundary itself) and the alterations in boundary "appearance"

introduced by the digitization process.

Physical factors affecting appearance are primarily edge sharpness

(i.e., the "length" of the transition region), edge contrast (i.e.,

intensity variation across the edge), and edge context (i.e., the

nature of the intensity variations in the image in the vicinity of the

edge ).

Alterations In appearance resulting from the dlgltlzatlon process

are primarily a blurring of edge sharpness (lengthening of the

transition region) and possibly a reduction in contrast. Both of these

effects result from the low-pass filtering effect introduced by the

finite size of the sampling window used to accoaplish the digitization

step (see Figure B-5).

a. Ge_ EdKe _Model

Ideally, we might assume that the local presence of an edge in

an image is indicated by a step discontinuity (see Fig. B-T) of some

combination of image attributes, such as intensity or color or texture;

however, this ideal edge is seldom encountered. In practice, the actual

edge appearance is affected by the spatial resolution and sampling

effects introduced by the sensor and digitizer, the spectral response of

sensor, and the illumination and reflectance characteristics of the

scene. For example, if the image were obtained by a system having

limited bandwidth, then we would expect that the imaged edge of a

physlcal object would result in an intensity ramp similar to that shown

in Figure B-2. Figure B-3 shows some actual intensity profiles through

a number of edge and nonedge features.
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b. _ Specialized ._LF_Model

Rather than attempting to define a completely general edge

profile that is suitable for all types of edges and environments,

experience has shown that it makes more sense to model the specific

types of edges we are interested in. In this appendix we will consider

a specialized edge model that still has a significant residue of

generality; in particular, we will now define an edge model appropriate

to a land/water interface or to the boundary between a man-made object

(e.g., a building or road) and the surrounding natural terrain.

This model (see Figure B-4) specifies the two "aprons"

adjacent to the ideal edge ramp of Figure B-2; one apron having a

relatlvely low variance intensity profile (water, man-made object), the

second apron characterized by a distinct mean value and possibly a high

variance (the natural terrain). The flat (low variance) apron helps us

to locate the onset of the intensity ramp and distinguish the edge from

nonedge.

o. Fhysleal Factors Affectln_Ed_eaAp.p_E_[i_

Now let us consider the case of a real edge representing a

land/water interface. Unless we had recorded our image on infrared

film, there is the possibility of some penetration of the water surface

by light in the red-green bands; thus, the onset of the ramp--even

assuming infinite bandwidth--could occur on the water side of the actual

boundary llne. Since we can easily solve this problem by a proper

choice of the spectral band used to create the image, we will assume

that the water' is essentially opaque to light. We further note that the

nonuniform intensity of the land could result in the intensity ramp

extending past the actual boundary llne, well into the land area.

The land/water edge model indicated in Figure B-_ shows the

water as being dark as compared to the land. While this will geaerally

be the case, the model can be trivially extended (or the image

intensities inverted) to deal with the reverse situation. It should be

noted, however, that to ensure good land/water contrast, we would llke
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to avoid specular reflection from the surface of the water. This can be

accomplished by an appropriate combination of viewing and sun locations

in acquiring the imagery kor by invoking a sensor that is not dependent

on reflected light).

d. Effects of DiKi_izati_?n on _ Appearance

For almost any reasonable set of camera, fiim, _nd

digitization parameters, the greatest limitation on bandwidth will

result from the sampling window used in the digitization process; the

width of the ramp resulting from a step function edge will thus be at

most two pixels, assuming linear interpolation between the digitized

intensity values. Thus, regardless of the nature of the apron appended

to the edge ramp by the land intensity profile, we can assert that the

true image location of the edge denoting a land/water interface will lle

within the interval (0.5 - 1.5) plxels from the water end of the

intensity ramp (see Figure 8-5). With reasonable land/water contrast

compared to the variance in intensity over the water area, we should be

able to locate the foot of the intensity ramp to within a one pixel

interval of uncertainty. We can, therefore, expect to be able to locate

the land/water bound:_ry along a single intensity profile to an error of

less than plus or minus one pixel.

e. _fieance of Modeling t__ __r__ _

in Relation to its Imaged A_pearance

The primary reason for our Interest in modeling the precise

edge location as part of our land/water boundary model is that, while a

decision procedure based on multiple measurements can tolerate any

amount of "unbiased" error given a sufficient number of measurements,

the ultimate accuracy attainable (in estimating a continuous variable)

is limited by the unknown bias associated with the Individual

measurements. We are actually less concerned wlth accuracy than with

bias; however, to control or estimate bias, we must (at least

theoretically) know the correct answer. To the extent that we must be
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satisfied with asserting that the correct answer lies somewherein an
interval, a consistent bias can result in a final error of one-half of

that interval.

As discussed in the preceding section, two factors can

introduce a consistent bias into our model: the assumption that there

is no significant penetration of the water in the spectral band of the

light used to create the image and the assumption about how the edge

intensity ramp is created by the digitization process acting on the

actual imaged edge. If both of these assumptions are valid, then our

model will permit us to obtain an unbiased estimate of the mean edge

location.

4. A__nnAlgorithm for Model-Based Edge D_t_Ction

The algoritlln we will now describe has two parts--the first part,

concerned with local boundary detection, is based on the edge model

described in the preceding section; the second part is a procedure for

combining a-priori shape information (elevation contours) with the local

land/water boundary estimates to make a globally optimal estimate of a

shape parameter (i.e., the elevation associated with the contour shape

that best matches the reservoir shape as detected in the image).

a. Detecting the Land/Water Interface

This algorithm, in addition to assuming the edge model

described earlier, invokes map knowledge to supply the approximate

location and orientation of the edges of interest; i.e., our model is

augmented by position and orientation attributes.

The algorithm operates by first placing the image to be

analyzed into correspondence with a map data base using a camera

calibration procedure of the type described in Appendix A. In addition

to the elevation contour information, the map data base contains the

coordinates for a set of lines that are approximately normal to the

elevation contours at selected locations around the nominal reservoir

boundary we are attempting to detect. The problem of local boundary
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detection is now reduced to determining where each of these selected
lines, when projected onto the image, intersects the land/water
interface.

Becauseof edge continuity at right angles to the line along

which we are searciling (i.e., the projected normal), we can effectively

search for a section of edge boundary, rather than a single edge point,
by (bilinearly) interpolating the surrounding intensity values onto the

projected normal (see Figure B-6).

We now invoke our edge model by scanning along the normal,

starting from well into the water, and searching for a significant jump

in intensity. Typical values of the standard deviation of intensity in

the water are 5 or less, while the intensity difference moving across

the land/water interface is usually on the order of at least 20 units

(our images are guantized to eight bits of gray scale). Once an

intensity rise of three or more standard deviations has been detected,

we mark the estimated boundary point either at that location or at the

succeeding pixel location, if the intensity slope is even greater there.

b. Estimating A Globally Optimal ShaDe Parameter

Given the set of boundary points found using the algorithm

described above, we can now project the contour information from our map

data base onto the normals and associate an elevation value with each of

the edge points. If our assumption that the model introduces no

systematic biases is valid, then a simple average of a sufficient number

of edge point elevations should provide a reasonable approximation to

the desired answer (i.e., reservoir water level elevation).

It is important to note here that even if the edge model

provides unbiased estimates in distance from the true edge location in

the image plane, this does not necessarily imply that the associated

elevation values are also unbiased (i.e., the elevation gradient in the

image plane is not constant). Furthermore, even if our model does

permit unbiased estimates of the edge points in both image plane

distance and elevation, the local boundary detection algorithm can fail
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because off conditions not considered in the edge model. For example,

small clouds may obscure portions of the boundary we are searching for;

or vegetation changes may eliminate the anticipated contrast between

water and land; or a man-made or natural alteration in the land profile

may cause the contour-map data to be locally incorrect. Any of the

precedin£ conditions can cause one or more of the edge points to be

significantly displaced from _ts reference location and, in fact, can

introduce large systematic errors into the averaging computation.

Therefore, the simple average of local boundary point elevations is not

a generally reliable decision procedure by itself.

To better deal with the problems caused by local deviations

firo_ the model, we choose to view the problem of contour selection as a

discrimination (rather than a parameter-estimation) task. We first

obtain a rouEh estimate of the desired parameter (elevation associated

with the reservoir boundary) using the simple average. We now take two

successive contours near the computed average value and determine which

of the two has a shape most like the boundary detected in the image.

The best fittinE contour is retained and compared with the next adjacent

contour. These pairwise discriminations are repeated until the best

matching contour has been found.

In the experiment to be described, the contour map had

elevation intervals of 5 feet and the image had a resolution of

approximately 20 ft./pixel. The ability to discriminate between two

contours, which can be closer together than the accuracy with which

_ndividual edge points can be located, Js based on the assumption of

unbiased errors in image plane distance about the contour actually

corresponding to the reservoir boundary. Our model indicates that if

one of the contours heine tested is indeed the correct one, then almost

all actual boundary points will fall within one pixel of that contour's

projection onto the image plane. We can therefore eliminate from

consideration all detected boundary points that do not satisfy this

criteria in dlscriminatin E between a pair of candidate contours. We

also eliminate from consideration those detected boundary points that
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fall between the two contours being compared. These points do not offer

reliable discrimination information because their location is spatially

quantized and the separation between the two candidate contours is

typically a fraction of a pixel.

We are thus left with those detected boundary points that lie

just outside the interval between the two contours. If we label the two

contours as "A" and "B", then those remaining boundary points adjacent

to Contour A support the hypothesis that A is more similar to the

boundary than B; the converse situation holds for the points adjacent to

Contour B.

The simplest discrimination procedure is to choose that

contour that has the greatest support, by comparing the number of points

adjacent to each contour. A theoretically more powerful technique is to

compute the likelihood ratio for the two hypotheses (A is more similar

in shape to the boundary than B; B is more similar in shape to the

boundary than A). Given that the errors have a normal distribution and

that we measure displacements along each normal from an origin located

midway between the two candidate contours, then the logorlthm of the

llkellhood ratio is simply the sum of the signed displacements from the

origin to the boundary point (x) times the absolute value of the

distance separating the two contour lines along the corresponding

normal, each of these terms being divided by the variance of the random

variable x (see Figure B-7).

If we assume that the standard deviation of x is constant over

the different normals, then we accept the hypothesis that A is more

similar to the boundary shape than B if the sum of the absolute

distances between the contour lines along the nor_als that support A is

greater than the corresponding sum for B. Thus, instead of simply

counting support points, we now weight the contribution at each normal

with a factor that represents the significance of the corresponding

support in choosing between A and B.

An add_tlonal refinement would be to drop the assumption that

the variance (essentially a reliabillty factor) has a constant value for
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all normals. It is likely that the variance associated with a given

normal is inversely related to the intensity difference or gradient

across the edge at that normal; however, this conjecture remains to be
verified.

5. Experimental Results

In an attempt to investigate the feasibility of the proposed

approach, we performed an experiment in which the previously described

techniques were applied to an aerial photograph containing the Briones

reservoir (located north of Oakland, California). We had independent

knowledge of the actual water elevation as one measure to use in

evaluating our results.

ao Data E_ements

(I) A USGS aerial photograph containing Briones Reservoir:

ID Number:

Date of Photography:

Time of Day:

Altitude:

Focal Length:

Image Size:

GS-VBZJ-3-21

4-22-68

14:10

15,000 ft.
6 in.

9 x 9 in.

(2) A digitized version of the Briones image:

Resolution:

Size:

Intensity Levels:

20 ft./pixel

1024 x 1024 pixels

256 (8 bits)

(3) An East Bay Municipal Utility Distr_ct (Oakland, Calif.)

contour map of the region containing the BrJones Reservoir.

This map was produced before the reservoir was built.

ID Number:

Date of Photography:

Contour Intervals:

Scale:

(5 sheets)

DH-4613-40

10-25-63

5 ft.

200 ft./in.

(4) The Briones water level elevation was known to be 524.5

ft. on 4-22-68. (This information was obtained from

the East Bay Municipal Utility District.)
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b. Experimental Procedure

A contour map [Data Item (3)] of the Briones area was placed

on a digitizing table, and a full three-dimensional projective

transformation was established between it and a digital image of the

same area [Data Item (2)]. A set of 136 "normals", at manually selected

locations about the reservoir boundary, were then drawn on the contour

map; and the coordinates of the 500- to 550-ft. elevation contour lines

(11 such lines at 5-ft. elevation intervals) were marked and digitized

for each of the normals.

To satisfy the needs of the algorithm, as well as to supply

data for some subsidiary goals, reservoir land/water boundary points

were obtained on each normal by four different methods:

* The land/water model-based edge finder, described earlier.

* The Hueckel edge detector m, using an 8-pixel diameter

window. Here we ran the Hueckel operator over the region

of interest and chose the best edge score on each normal.

* Manual marking of the apparent edge location by two persons

involved in the experiment.

* The nominal edge locations obtained by projecting the 525-

ft. contour line onto the image.

Figures B-8 and B-9 show the overall reservoir site, some representative

examples of intensity profiles along the normals, and edge placements by

the various techniques.

m
HuecKel, M. H., "An Operator which Locates Edges in Digitized

Pictures," Journal of the Association for ComDutin£ MachinerY, 4ol. 18,

No. I (January 1971).
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C •

between elevation contours

results were obtained:

Analysis of the Experimental Data

Using edge point elevation values determined by interpolating

[Data Item (3)], the following statistical

MEAN STANDARD MINIMUM MAXIMUM

ELEVATION DEVIATION ELEVATION ELEVATION

METHOD (feet) (feet) (feet) (feet)

Model-based 521.2 4.0 512.5 530.2

Hueckel 522.3 4.9 513.6 543,4

Person I (HW) 522.5 4.6 513.9 536.7

Person 2 (MF) 522.5 4.5 514.1 534.8

The statistics ror the image

model-based detected boundary (DB) and

line are:

plane distances between the

the 520- and 525-ft. contour

CONTOUR MEAN STANDARD MINIMUM MAXIMUM

PAIR SEPARATION DEVIATION DIFFERENCE DIFFERENCE

DIFFERENCED (PIXELS) (PIXELS) (PIXELS) (PIXELS)

525-520 !,13 0.84 0.310 9.59

DB-520 0.29 1.03 0.004 7.12

525-DB 0.84 0.82 0.010 2.47

On 65 of the normals, the separation between the 520 and 525 contour

lines was less than one pixei, while on the remaining 71 normals the

separation was one pixel or greater.

A 90 percent confidence interval about the detected land/water

boundary, based on an average standard deviation of 0.922 pixel and 136

sample values, is 0.14 pixel for the mean d_fference in distance between

the detected and map-based contour lines.
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The global shape-matching algorithm was applied to the model

i
f

based edge points and the contours in the set (515-530), resulting in

the following scores:

CONTOUR PAIR RESPECTIVE SUPPORT

515 vs 520 4.4 vs 137.8

520 vs 525 55.4 vs 35.9

525 vs 530 165.3 vs 0.8

Conclusion: The reservoir land/water boundary is most similar

in shape to the 520-ft. elevation contour line and lies somewhere in

the interval between the 520 and 525-ft. elevations.

d. piscussion

The one key data element we did not possess at the start of

our experiment was the exact location of the land/water boundary

referenced to the image plane. This information was necessary to

directly test the validity of our edge model, especially in regard to

the question of bias. It was believed that these data could be obtained

from the contour map and our knowledge of the actual water level

elevation, after we had achieved precise image/map correspondence.

However, after a careful manual examination of the data, we came to the

conclusion that the 525-ft. elevation contour simply did not have the

same shape as the reservoir land/water boundary. Figure B-8(d) shows

the projection of the 525 contour line onto the image plane after our

best attempt to achieve image/map correspondence. While the general

match between the 525-ft. contour llne and the reservoir boundary is

reasonable, there are a number of obvious discrepancies; thus we could

not trust the remaining data to give us the "true" boundary location.

It is apparent that what is really required to directly

validate a precision edge model of the type we are concerned with here

is an instrumented test site (i.e., the water llne 3urveycd or

photographed with visible markers) and test photography acquired at a

73



resolution well beyond that intended for the actual application. For

the limited experiment we had intended to perform, it was impractical to

attempt to acquire such data.

Inability to verify our edge model or to determine whether the

source of the discrepancy between the 525-ft. contour line and the

land/water bounda_-y results primarily from map construction (probably

random errors) or to the calibration process (probably systematic

errors) are limiting factors on the conclusions we can draw from our

experiment. Nevertheless, even though the projection of the map contour

data is questionable in regard to providing us with the precise location

of the land/water boundary on each individual normal, the distribution

of errors may be reasonably compatible w_th our assumptions, since our

final answer was within a few feet of the correct water level elevatlon.

Given the above considerations, if we are willing to accept

the proposed edge model as being valid, then an examination of mean

values of water level provided by the different edge finding techniques

leads to some interesting insights.

The land/water boundary appears in the image as a spatially

compact ramp edge, which is somewhat extended in a random manner on the

land side of the ramp. An edge finder based on a general edge model,

such as the Hueckel edge finder, will tend to place the edge location at

the center of the ramp and thus be biased on average toward the land.

Our evidence seems to show that humans invoke a similar strategy for

this type of edge profile, thus accounting for the similar average

answers provided by manual and Hueckel edge detection Jn this

experiment.

The proposed edge model, "knowing" that the foot of the ramp

is the most reliable indicator of the true edge location, provides an

answer that is closer, on average, to the water end of the ramp than the

other techniques. The 525-ft. contour llne can be observed te project

onto the edge ramps at a point that is typically fairly close to the

land end of the ramp. This can be partially explained by the fact that

the camera calibration used in this test was performed by a human
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operator trying to match landmarks in the image with points on the

contour map; many of these correspondences were points on the 525-ft.

contour, with points on the perceived land/water boundary in the image

that we know were biased toward the land. The point here is that even

though humans wlth reasonably normal vision are remarkably consistent in

choosing the location of boundary points in an image (in our experiment

the two people agreed exactly in their choice of edge-point location on

100 of the normals and differed by one pixel in their remaining 36

choices), they use a general model that may not be in agreement with the

underlying physical situation.

To complete our discussion of the experiment from the

standpoint of determining the reservoir water level elevation, we note

that the model-based edge finder operated well enough to provide us with

an average value about as close to the correct answer as we could hope

to get from the given data. In a sense, it performed too well, since

the global shape matching algorithm really had nothing additional to

offer. This situation resulted because we were working with a very

"clean" image; the model-based edge finder made no real mistakes (i.e.,

selected an edge point completely off the land/water intensity ramp),

and the Hueckel edge finder "refused" to make an estimate on three of

the normals, while making only four mistakes elsewhere (see Figure B-

10). In a continuous monitoring situation, the availability of such

clean imagery cannot be counted on, and the result of a simple averaging

computation will be unreliable. (There is also the additional issue of

the edge model ensuring unbiased image plane edge point location

estimates, but not unbiased associated elevation values.)

with 5-ft.

accomplish by

shape was to

minus 2.5 ft.

Given that our reference data was in the form of contour lines

elevation differences, the best we could expect to

selecting the best match between boundary and contour

estimate the water level elevation to within a plus or

error. This could be accomplished by either finding a

single best match or by finding two contour lines that appear to bracket

the detected land/water boundary. The latter situation occurred in our
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experiment with the 520 and 525 contour lines being relatively good

matches. The short confidence interval (0.14 pixel) about the detected

boundary implies that the actual water elevation lies some_nhere between

a q20- and 525-ft. interval.

The main contribution of this effort was the development of a

method for the effective use of a-priori knowledge of shape and location

t.o infer highly accurate geometric information from coarse image

measurements. The ultimate accuracy achievable by such an approach is a

function of the unknown biases in the reference data (i.e., the a-priori

contour/shape information) and in the models (the calibration and edge

models). Assuming no such unknown biases, then the problem is to

efficiently use multiple measurements to reduce random errors in both

the models and the measured data and to develop efficient methods for

making the needed measurements.

We have developed an effective model-based edge finder and a

decision procedure for making a globally optimal decision using coarse

local measurements. The effectiveness of this latter technique is

enhanced by detecting and eliminating data points that have high

probability of being in error and by weighting the valid data points

according to their discriminative information content.

The experiment we performed must be considered illustrative, rather

than an actual demonstration of the proposed methodology, since we had

no reasonable way to verify a key data item (i.e., the precise location

of the l_nd/water boundary in the image data).

As a by-product of the experiment, we acquired some data on the

biases to be expected when a human observer attempts to locate edges

manually in terrain imagery.
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FIGURE B-I

f
AN INTENSITY PROFILE NORMAL TO AN "IDEAL" EDGE IN AN IMAGE

FIGURE B2 AN INTENSITY PROFILE NORMAL TO AN "IDEAL" EDGE IMAGED

BY A SYSTEM _%rl'l-H LIMITED RAND_h'II)TH
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FIGURE B-3 SOME ACTUAL INTENSITY PROFILES OF EDGES AND NONEDGES

Intensity profiles of edge features; bright line : bilinea) intensity, gley line pixel

intensity. X-axis = 1 pixel, unit, Y-axis 10 intensity levels unit. The two vertical

lines show location of contours 520 and 525, (a),(b) nonedges. (c), (d), (e), (f) edges.
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FIGURE B-3 SOME ACTUAL INTENSITY PROFILES OF EDGES AND NONEDGES (Concluded)

Intensity profiles of edge features; bright line = bilinear intensity, grey line _ pixel

intensity,, X-axis _ 1 pixel/unit, Y-axis : 10 intensity levels/unit. The two vertical
lines show location of contours 520 and 525. (a), (b) nonedges, (c), (d), (e), if) edges.

OR M_N-M;_DE 5t.)RF,_CE

FIGURE B-4 THE INTENSITY PROFILE OF A LAND-WATER INTERFACE OR BOUNDARY

BETWEEN A MAN-MADE SURFACE AND SURROUNDING NATURAL TERRAIN
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FIGURE B-5 RELATIONSHIP BETWEEN QUANTIZED EDGE INTENSITY PROFILE

AND ACTUAL EDGE LOCATION IN THE IMAGE PLANE
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x 2 CONTOUR A

_ CONTOUR B

it h

NORMAL

Likelihood Ratio = L(x) -
P(xIA)

P(xiB)

Accept Hypothesis A if L(x) >I 1

Accept Hypothesis B if L(x) < 1

P_A) = I] P(xilA) P(xIB) = I1 P(xIIB)
i i

1

P(xilA) _,2_/_o _ exp

I [( xi + _ -12

P(xilB) = _ exp L- 202

assuming

x i supports

Hypothesis A

di ! 1 for i+ALog L(x) = x i- where x i = -1 for i-_B
°2 (approximately)

FIGURE B-7 A DECISION PROCEDURE FOR GLOBAL SHAPE MATCHING
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(a) RESERVOIR OVERVIEW (b) RESERVOIR OVERVIEW WITH EOGE POINTS

FOUND BY MOOEL-BASED EDGE DETECTOR

I¢) CONTOURS 500, 525 AND 550 ON FULL-
RESOLUTION VIEW OF RESERVOIR

|d) INTERSECTION OF NORMALS AND 525 CONTOUR

LINE -- NOTE THAT MANY POINTS ARE DIS-

PLACED FROM LAND/WATER INTERSECTION.

FIGURE B-8 IMAGES OF BRIONES RESERVOIR
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FIGURE B-9 COMPARISON OF EDGE POINTS FOUND BY AUTOMATIC AND MANUAL

TECHNIQUES

Intensity profiles of edge features; bright line = bilinear intensity, X-axis =

1 pixel/unit, Y-axis = 10 intensity levels/unit. The two bright vertical lines

show location contours 520 and 525. + = model-based technique,

X = Hueckel edge detector, [] = person 1, _ = person 2
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FIGURE B-9 COMPARtSON OF EDGE POINTS FOUND BY AUTOMATIC AND MANUAL

TECHNIQUES (Concluded)

Intensity profiles of edge features; bright line bilinear intensity, X-axis =

1 pixel/unit, Y-axis = 10 intensity levels/unit. The two b, ight vertical lines

show location contours 520 and 525. + = model-based technique,

X = Hueckel edge detector, L_ = person 1, - = person 2

85



FIGURE B-IO ERRORS MADE BY HUECKEL EDGE-FINDER

Biigh[ line bilinear intensity, X-axis 1 pixel/ur_it, Y-axis 10 intensity

levels/unit. The two bright vertical lines show contours 500 and 525.

= model-based technique, X - Hueckel edge detector
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